
A Greedy Gradient-Simulated Annealing
Hyper-heuristic for a Curriculum-based Course

Timetabling Problem
Murat Kalender∗, Ahmed Kheiri†, Ender Özcan†, and Edmund K. Burke‡

∗Yeditepe University, Computer Engineering Department
Inonu Mh., Kayisdagi Cd., 34755 Kadikoy/Istanbul, Turkey

mkalendertr@yahoo.com
†University of Nottingham, School of Computer Science

Jubilee Campus, Wollaton Road, Nottingham, NG8 1BB, UK
axk, exo@cs.nott.ac.uk
‡University of Stirling

Cottrell Building, Stirling FK9 4LA, UK
e.k.burke@stir.ac.uk

Abstract—The course timetabling problem is a well known
constraint optimization problem which has been of interest to
researchers as well as practitioners. Due to the NP-hard nature
of the problem, the traditional exact approaches might fail
to find a solution even for a given instance. Hyper-heuristics
which search the space of heuristics for high quality solutions
are alternative methods that have been increasingly used in
solving such problems. In this study, a curriculum based course
timetabling problem at Yeditepe University is described. An
improvement oriented heuristic selection strategy combined with
a simulated annealing move acceptance as a hyper-heuristic
utilizing a set of low level constraint oriented neighbourhood
heuristics is investigated for solving this problem. The proposed
hyper-heuristic was initially developed to handle a variety of
problems in a particular domain with different properties con-
sidering the nature of the low level heuristics. On the other hand,
a goal of hyper-heuristic development is to build methods which
are general. Hence, the proposed hyper-heuristic is applied to
six other problem domains and its performance is compared
to different state-of-the-art hyper-heuristics to test its level of
generality. The empirical results show that the proposed method
is sufficiently general and powerful.

I. INTRODUCTION

A. Selection Hyper-heuristics

A hyper-heuristic is a high level (meta-)heuristic which
performs a search over the space of (meta-)heuristics for
solving computationally hard problems [1], [2]. A hyper-
heuristic processes problem independent information obtained
from the low level heuristics which operate at the problem
level. The hyper-heuristic methodologies are used to select
or generate heuristics [3]. This study focuses on a selection
hyper-heuristic framework which contains two essential com-
ponents: heuristic selection and move acceptance methods, as
identified in [4]. Such a hyper-heuristic attempts to improve
a solution (or solutions) by selecting a perturbative heuristic
(or heuristics) followed by a decision to accept or reject the
resulting solution(s) at a given step during the search process.

A selection hyper-heuristic of this sort will be denoted as
heuristic selection−move acceptance from this point onward.

Cowling et al. [2] experimented with selection hyper-
heuristics that combine random descent, random permutation,
random permutation descent, greedy (GR) and choice function
(CF) heuristic selection mechanisms by accept all moves
(AM) and accept only improving moves as move acceptance
strategies. Greedy applies all low level heuristics to the current
solution, generating multiple new solutions and chooses the
one that achieves the best objective value. Choice function
utilises a mechanism that scores each low level heuristic based
on its individual performance, pair-wise successive perfor-
mance and the duration since the last time a heuristic was
invoked. The heuristic having the maximum score is chosen
and applied to the candidate solution at each step. Both GR and
CF are online learning mechanisms, since they both get and
use feedback during the search process. GR has a very short
term memory as the feedback (i.e., best candidate solution
among all) is used instantaneously and then forgotten [1]. At
the end of the experiments, the authors observed that CF−AM
was the most promising hyper-heuristic [2]. The performance
strength of CF has been illustrated in the other studies as well
[4], [5], [6].

A variety of move acceptance methods have been inves-
tigated as a selection hyper-heuristic component, including
simple deterministic methods, such as accept all moves, only
improving moves, equal and improving moves, and more elab-
orate methods, such as great deluge and simulated annealing
[1]. Simulated annealing accepts improving moves and non-
improving moves with a probability provided in Equation 1.

pt = e
− ∆f

∆F (1− t
T

) (1)

where ∆f is the quality change at step t, T is the maximum
number of steps, ∆F is an expected range for the maximum

quality change in a solution after applying a heuristic. Bai
and Kendall [7], Bai et al. [8] and Bilgin et al. [6] reported
the success of simulated annealing as a move acceptance on
the shelf allocation and examination timetabling problems,
respectively. Moreover, Bilgin et al. [6] tested 36 different
hyper-heuristics by pairing up a range of heuristic selection
and move acceptance methods over a set of examination
timetabling problem instances. The results indicate the success
of CF−SA.

B. University Course Timetabling Problem

The educational timetabling problems, such as univer-
sity course timetabling, examination timetabling and school
timetabling, are NP-hard real-world constraint optimisation
problems [9], [10]. University course timetabling is the focus
of this study, which requires a search for the best course
schedule and the best allocation of limited resources in an
educational institution subject to a set of constraints. There
are two basic constraint types in timetabling problems: hard,
and soft. The hard constraints require absolute compliance,
whereas the soft constraints characterise preferences. Types
(and categories) of the constraints, number of the constraints,
courses to be scheduled and the resources in a problem might
influence its difficulty level. As a subclass, university course
timetabling problems have been studied by many researchers
[11], [12], [13], [14]. The university course timetabling prob-
lems can be further subdivided into (i) post-enrollment prob-
lems in which the student enrollment is known, and (ii)
curriculum based problems in which the student enrollment
is not known and student curriculums are available prior to
the timetabling process [15].

Due to the nature of timetabling problems (e.g., unstructured
search space, immense size of the search landscape, constraints
etc.), meta-heuristics are preferred in most of the previous
studies. Genetic algorithm (GA), memetic algorithm (MA),
ant colony optimization, simulated annealing (SA) and tabu
search (TS) are the most common meta-heuristics used for
solving different types of course timetabling problems across
different institutions.

Abramson [16] utilized simulated annealing for course
timetabling. Colorni et. al. [17] evaluated a variety of meta-
heuristics based on GA, SA and TS on some Italian high-
school data. They observed that MA combining GA and local
search performed better. Herz [18] employed TS for obtaining
the best course schedules. Erben et al. [13] generated a weekly
timetable for a heavily constraint problem instance using GAs
with smart operators. They used binary encoding as a represen-
tation scheme. Schaerf [19] proposed an interactive interface
for timetabling and embedded TS as a search tool for solving
some high-school course timetabling problems. Paechter et al.
[20] also used an interactive tool that allowed users to visualize
violated objectives and modify the objectives during a run for
solving Napier University timetabling problem. They used an
evolutionary algorithm within their tool for performing the
search. Abramson et al. [21] tested different cooling schedules
within SA for course timetabling. Filho et al. [22] formulated

timetabling problem as a clustering problem and applied a
constructive GA for solving timetabling problems of public
schools in Brazil. Socha et al. [14] described a max-min ant
system for solving course timetabling problem and compared
their approach to a random restart local search approach using
eleven benchmark problem instances.

Alkan and Özcan hybridized a violation directed hierarchi-
cal hill climbing method (VDHC) using constraint oriented
neighbourhood heuristics in [23] with genetic algorithms for
solving the university course timetabling problem. Similarly,
the constraint oriented neighbourhood heuristics were found to
be effective when used as a part of a hybrid framework in [24]
for solving a variant of a course timetabling problem. Burke et
al. [25] used a combination of tabu search and reinforcement
learning scheme as a heuristic selector and tested their hyper-
heuristic over different timetabling problems. Burke et al. [26]
employed a case-based reasoning approach as a hyper-heuristic
using different measures for similarity of instances for solving
course timetabling problems. Burke et al. [25] used tabu
search hyper-heuristic to build solutions using graph coloring
heuristics for solving timetabling problems. Detecting the state
of the art method for the university course timetabling among
modern approaches was one of the deriving ideas behind
the International Timetabling Competition ITC2007 hosted by
PATAT and WATT1. The winner of the Curriculum based
Course Timetabling track was a hybrid approach designed by
Müller [27].

In this study, we introduce a curriculum based university
course timetabling problem constantly dealt with at Yeditepe
University, Faculty of Engineering and Architecture, Computer
Engineering Department and hyper-heuristic solution to the
problem, which combines a fast reacting greedy and gradi-
ent heuristic selection mechanism with simulated annealing.
A goal of hyper-heuristic research is to raise the level of
generality by providing methodologies which are applicable
to a variety of problem domains.

There are tools like Hyperion [28] and Hyflex [29] which
are available for rapid development and research of hyper-
heuristics or meta-heuristics. Hyperion provides a general
recursive framework that supports the selection hyper-heuristic
frameworks provided in [4]. Hyflex provides an object-
oriented hyper-heuristic framework, having a support for the
problem domains of boolean satisfiability, one-dimensional
bin-packing, permutation flow-shop, personnel scheduling,
travelling salesman problem (TSP) and vehicle routing prob-
lem (VRP). In this study, Hyflex is used to test the generality
of the proposed hyper-heuristic across the different problem
domains. Hyflex implementation supports the idea that no
domain specific information is passed through the domain
barrier from the domain level to the hyper-heuristic level. On
the other hand, there are different views on what constitutes a
domain specific information and generality of a hyper-heuristic
method. The proposed hyper-heuristic similar to the state-of-
the-art hyper-heuristic approach [30] does not discriminate

1http://www.cs.qub.ac.uk/itc2007/

between the types of the hyper-heuristics and does not use
the type information for the low level heuristics in a given
problem domain. Even if one decides to make use of this
information say to create a generalised iterated local search
framework where a prefixed hill climbing is applied after a
perturbative low level heuristic. It is difficult to do this with the
current version of Hyflex problem domain implementations,
since the annotation of low level heuristics does not provide
full information. For example, a ruin and create heuristic could
be a mutational or hill climbing heuristic, which goes for the
crossover operators as well.

Section II describes the greedy gradient hyper-heuristic
selection methodology used for solving a curriculum-based
course timetabling problem. It provides the constraints of the
problem and the components of the proposed selection hyper-
heuristic, including heuristic selection, move acceptance and
low level heuristics. Section III provides the empirical results.
Finally, Section IV presents the conclusions.

II. METHODOLOGY

A. Greedy Gradient Heuristic Selection

In most of the previous applications of reinforcement
learning in hyper-heuristics, a utility value is increased as a
reward mechanism and decreased for punishment [31], [32].
It has also been observed that the memory length affects
the performance. The proposed hyper-heuristic framework is
somewhat adapts a similar strategy. Instead of a predefined
scoring mechanism, the fitness change in between the old and
current solution generated after the application of the selected
heuristic is used as a utility value. Whenever the utility value of
each heuristic is 0, a greedy-like strategy is invoked (Figure 1,
steps 2, 3). Each heuristic is called one by one using the same
solution at hand and the fitness change is recorded as a utility
value of the corresponding heuristic. If a heuristic causes a
worsening move, its utility value is set to 0. Then, a heuristic
is chosen based on the scores (Figure 1, step 4). In this study,
max function is used, choosing the heuristic that generates
the best improvement. After applying the selected heuristic,
its score is updated right away using the fitness change. This
strategy neither makes use of a periodic update of scores as
in [8], nor forgets the scores as soon as a heuristic is selected
as in a greedy method [2]. In the case when one heuristic has
a non-zero value, it will be selected as long as the solution
improves and the hyper-heuristic will act like a gradient hill
climber.

During the heuristic selection process, utility values of a
subset of heuristics returned by the max function might be
the same, necessitating a tie breaking strategy. Two different
cases emerge: a non-zero tie score for some heuristics or all
0s. A random selection is performed in the former case. For
the latter case, a problem dependent feature is implemented.
Another utility array is maintained to keep track of the number
of violations due to each constraint type. Again, max function
is used for determining the highest number of violations and
the corresponding constraint type. Hence, the corresponding

heuristic is invoked. Then, the utility values of the selected
heuristic are updated in both arrays using the new solution.

B. Curriculum-based Course Timetabling Problem

Every year, Computer Engineering Department (and so the
other departments as well) at Yeditepe University, Faculty of
Engineering and Architecture deals with a curriculum-based
course timetabling problem. Each student has to follow a
curriculum at Yeditepe University. Since, time to time some
changes are made to the curriculums, there might be a cohort
of students with different curriculums to follow based on the
existing courses at a given time. A curriculum consists of eight
terms and there are on average six courses per term for a
student to register. In general, a student registers to all the
courses at a given term, unless the student has failed from
some previous courses. The latter type of students are not
considered during the timetabling process. Some courses have
prerequisites and/or corequisites. The timetables are produced
for the regular students. A course consists of lecture, problem
solving and/or laboratory session meetings which could take
place at different locations (rooms). It is always desirable that
the lab or problem solving sessions are after the lecture hours
for a given course.

Lecturers handle the teaching, while laboratory and problem
solving sessions could be handled by a lecturer or a teaching
assistant or both. There are full time and part time lecturers.
The requests of part time lecturers regarding the time that they
teach have to be accommodated. There are some courses which
have to be taken by all students across the university and by
all engineering students and by all students at a department.
Similarly, there are optional courses open to all students in
the university, or within the faculty, or within a department.
Moreover, the optional courses are part of the curriculum
appearing in different terms. A lecture, problem solving or
laboratory session meeting takes 1, 2 or 3 hours, respectively.
The university imposes a template for the other units to follow
to make the timetabling process easier as illustrated Figure 2.
Only certain slots can be allocated for the meetings of 1 and 2
hour duration. 3 hour meetings have to consist of (2+1, 1+2)
blocks. The lecturers are allowed to provide preference for
their lectures, which is taken seriously. In general, the teaching
assistants are themselves postgraduate students taking other
courses, hence their teaching/tutorial hours must not overlap
with the lectures that they will attend.

After the university sets the times for the university-wide
compulsory courses, the faculty does the same and passes the
information to the departments. Then the departments have
to deal with the timetabling of the remaining courses and
the required resources. The following hard constraints are
identified:

• C01: The timetable template provided by the university
must be respected while scheduling meetings (see Figure
2). 2-hour blocks cannot be divided into a 1-hour block.

• C02: Course meetings can be assigned to predefined
time-slots.

1. Greedy Gradient Choose Heuristic(scores, current solution)
2. if (all heuristic scores are 0) then
3. invoke each heuristic using the current solution and

record fitness change as its score // 0 for worsening
4. choose a heuristic based on the scores

in case of a tie, use a tie breaking strategy
5. return (chosen heuristic id for invocation)

Fig. 1. Pseudocode of the greedy gradient heuristic selection method

• C03: A set of courses can appear as a part of multiple
terms in the curriculum. This is to accommodate optional
courses.

• C04: Course meetings can be enforced to take place in
the same day or in different days.

• C05: (w1) Meetings of a lecturer must not overlap.
• C06: (w2) Lecturers can provide their weekly availability

(or unavailability) for teaching.
• C07: (w3) The courses in a given term of the curriculum

must not overlap.
• C08: (w4) Certain time-slots from the weekly timetable

can be excluded during the timetabling process of the
courses for a term. One of the uses of this constraint is to
arrange a common time slot for departmental or faculty
meetings. The aim is to get as many lecturers free of
teaching during those times as possible, and so it is a
soft constraint.

• C09: (w5) A room with a suitable capacity must be
allocated for each course without any overlap.

• C10: (w6) The equipment required by a course must be
allocated without any overlap.

MONDAY TUESDAY WEDNESDAY THURSDAY FRIDAY

09:00-09:50

 10:00-10:50

11:00-11:50

12:00-12:50

13:00-13:50

14:00-14:50

 15:00-15:50

16:00-16:50

17:00-17:50

 18:00-18:50

Fig. 2. Yeditepe University course timetabling template.

Soft constraints are as follows:
• C11: (w7) The duration between the meetings of a

lecturer on a day should be within predefined minimum
and maximum limits.

• C12: (w8) The duration between the meetings on a day
for a regular student (studying term) should be within
predefined minimum and maximum limits.

• C13: (w9) The total number of meeting hours during
when a lecturer teaches on a day cannot exceed a prede-
termined maximum value.

• C14: (w10) The total number of meeting hours that a
regular student (studying a term) attends on a day should
be within predefined minimum and maximum limits.

• C15: (w11) The total number of courses scheduled for a
lecturer on a day cannot exceed a predetermined maxi-
mum value.

• C16: (w12) The order of between different course meet-
ings can be defined.

Constraints C01-C04 are handled through representation
and restricting the value assignment to each course and so does
not require any further attention during the search process.
Solving the course timetabling problem requires finding a
high quality timetable with the minimum number of con-
straint violations, if possible with no violations. The low
level heuristics are designed as a set of constraint based
neighbourhood operators as in [23]. Each low level heuristic
attempts to improve upon a corresponding constraint. A course
is randomly rescheduled to a constraint based neighbourhood.
Hyper-heuristics work as a high level strategy to manage those
low level heuristics. They aim to find a solution attempting to
minimise the hard and soft constraint violations, simultane-
ously. The evaluation function used in this study takes the
weighted average of the total number of constraint violations
and treats all constraints as if they were the same, but punishes
the hard constraint violations heavier than the soft constraint
violations:

evaluationFunction(T) =
∑
∀i

wigi(T) (2)

where T represents a candidate timetable, wi indicates the
weight associated to constraint i, gi indicates the number of
constraint violations of constraint i for the given timetable.
The goal is to find a timetable which minimizes the evaluation
function and the optimum value is zero indicating that there
are no constraint violations. The weight values used during
the experiments are provided in Table I.

III. EMPIRICAL RESULTS

A. Hyper-heuristics for the Course Timetabling Problem

The performance of four different hyper-heuristics are in-
vestigated over eight randomly generated instances (rp1-8) and
a real instance (cse) during the experiments. The experiments
were performed on a PC P4 Processor 3 GHz, 512 RAM. A

TABLE I
CONFLICT WEIGHT VALUES OF THE HARD AND SOFT CONSTRAINTS

w1 w2 w3 w4 w5 w6 w7 w8 w9 w10 w11 w12

5 5 5 5 3 3 1 1 3 3 1 1.9

run terminates after solution found or time limit reached 600
seconds. Table II summarises the performance of each hyper-
heuristic based on 50 runs for each instance. The rankings
of the different hyper-heuristics in Table II are calculated
according to the success ratios (the ratio of successful runs
in which the optimal solution is found to the total number
of runs), the average best fitness values and the average best
duration values of the tests.

The results show that greedy gradient, in the overall,
performs better than simple random (SR), greedy (GR) and
choice function (CF) heuristic selection methods as a part
of a selection hyper-heuristic embedding simulated annealing
as a move acceptance method. It is successful in particular
when the problem size grows. For the cse instance, all hyper-
heuristics perform similarly. Our ultimate goal is to be able
to solve the university timetabling problem for the whole
university. The results show that GG−SA is promising in this
respect.

In most of the cases, the hyper-heuristics rapidly improve
the quality of the solutions in hand. After a while, the
improvement process slows down as the approach reaches a
local optimum. Still, it seems that the simulated annealing
acceptance works well as a part of the implemented hyper-
heuristics, allowing further improvement in time until we get
the optimal solution. This behaviour is illustrated in Figure 3
for the GG−SA and CF−SA on the rp8 instance.

TABLE II
PERFORMANCE RANKING OF EACH HYPER-HEURISTIC OVER A SET OF

PROBLEM INSTANCES

label events lecturers GG-SA CF-SA SR-SA GR-SA
rp1 200 64 2.5 2.5 2.5 2.5
rp2 200 64 2 2 2 4
rp3 400 128 2 2 2 4
rp4 400 128 1 2 3 4
rp5 800 256 2 2 2 4
rp6 800 256 1 2 3 4
rp7 1600 512 1 2 3 4
rp8 1600 512 1 2 3 4
cse 200 64 2.5 2.5 2.5 2.5

avr 1.67 2.11 2.56 3.67

B. Testing the Level of Generality

HyFlex (Hyper-heuristics Flexible framework) [29] is an
object-oriented framework which has been developed recently
to provide a software tool for the implementation and com-
parison of different hyper-heuristics. HyFlex has been used
for CHeSC: Cross-Domain Heuristic Search Competition 2.

2http://www.asap.cs.nott.ac.uk/chesc2011/

0

1000

2000

3000

4000

5000

6000

7000

0 100 200 300 400 500 600 700

F
it

n
e

ss
 V

a
lu

e

Time (sec)

GG-SA

CF-SA

Fig. 3. Fitness of the current solution versus time for the top two hyper-
heuristics on rp8

TABLE III
THE NUMBER OF DIFFERENT TYPES OF LOW LEVEL HEURISTICS

{MUTATION (MU), HILL CLIMBING (HC), RUIN AND RE-CREATE (RC),
CROSSOVER (XO)} USED IN EACH PROBLEM DOMAIN.

Domain MU HC RC XO Total
MAX-SAT 5 2 1 2 10
Bin Packing 3 2 2 1 8
Permutation Flow Shop 1 5 3 3 12
Personnel Scheduling 5 4 2 4 15
Travelling Salesman 5 3 1 4 13
Vehicle Routing 3 3 2 2 10

The best selection hyper-heuristic will be determined among
CHeSC competitors which generalises the best across a set of
five problem instances from six different problem domains.

HyFlex currently provides an implementation of six min-
imisation problems including Boolean Satisfiability (MAX-
SAT), One Dimensional Bin Packing (BP), Permutation Flow
Shop (PFS), Personnel Scheduling (PS), Travelling Salesman
Problem (TSP) and Vehicle Routing Problem (VRP) each with
different instances and a set of low-level heuristics. These
low level heuristics are classified as mutational (MU), hill
climbing (HC), ruin and re-create (RC), and crossover (XO)
heuristics. The number of the low level heuristics for each
heuristic/operator type for each problem domain is presented
in Table III. Currently, there are 12 different instances for the
first four problem domains and 10 for the last two problem
domains. What is left is to design and implement a high-
level strategy (hyper-heuristic) that intelligently select and
apply suitable low-level heuristics from the set provided to
each instant from the given domain to get the minimum
objective function value in ten minutes. The crossover low
level heuristics take two solutions as a parameter, combine
them and return a new solution. In our approach we are
working on a single point which leads us to exclude all the
crossover heuristics

The proposed hyper-heuristic in this study is implemented
as an extension to HyFlex. In the simulated annealing accep-
tance method, the value of ∆F is set to 0.01 of the objective
value of the best solution in hand, since Hyflex does not have
a feature which supports the computation of maximum (ex-
pected) change in the quality of solutions. The performance of
the proposed hyper-heuristic is compared to the performances
of eight different hyper-heuristics (HH1HH8) across four
problem domains, each with 10 different instances, as provided
at (www.asap.cs.nott.ac.uk/external/chesc2011/defaulthh.html)
and in [33]. The comparison is based on the Formula1 scoring
system. The best hyper-heuristic gets 10 points, the second
gets 8, and then 6,5,4,3,2,1 and then all the remaining get zero
point. These points are accumulated as a score for a hyper-
heuristic over all instances from four problem domains each
with ten instances. The problem domains are Boolean Sat-
isfiability (MAX-SAT), One Dimensional Bin Packing (BP),
Permutation Flow Shop (PFS) and Personnel Scheduling (PS).

Table IV, V, VI and VII compare the performance of our
proposed hyper-heuristic (PHH) to the others (HH1–HH8)
over a set of problem instances for MAX-SAT, 1D bin packing,
personnel scheduling and permutation flow shop, respectively,
based on the objective values obtained at the end of each run.

In the MAX-SAT problem domain, our hyper-heuristic pro-
duces the best result in 3 out of 10 instances and there is a tie
in 1 instance. It is the second hyper-heuristic in this domain. In
the bin packing problem domain, our hyper-heuristic performs
still well and produces the best result in 2 instances, but in the
personnel scheduling problem, its performance is not as good
as expected. In permutation flow shop, the proposed hyper-
heuristic produces the best result in 2 instances. Table VIII
provides the results for each problem domain. The proposed
hyper-heuristic ranks the third with a total score of 211.5.

The performances of the proposed hyper-heuristic and
twenty other hyper-heuristics which were the CHESC finalists
are compared to each other. Five instances from each of the six
problem domains are selected randomly for comparison. The
solutions obtained from twenty one hyper-heuristics across all
instances are put into the competition based on the Formula1
scoring system. Table IX summarises the results. The proposed
hyper-heuristic ranks the tenth among others with a total score
of 54.0.

IV. CONCLUSION

In this study, a university course timetabling problem at
Yeditepe University, Faculty of Engineering and Architec-
ture is introduced. Moreover, the performance of a greedy-
gradient−simulated annealing hyper-heuristic is investigated
as a solution methodology. The proposed hyper-heuristic aims
to automate the process of selecting and combining perturba-
tive heuristics to solve the NP-hard curriculum based course
timetabling problem. A set of selection hyper-heuristics using
four different heuristic selection methods, including the pro-
posed method are tested on a real world problem obtained from
the Computer Engineering Department at Yeditepe University,
Faculty of Engineering and Architecture and eight problem

TABLE IX
COMPARISONS OF THE DIFFERENT HYPER-HEURISTICS.

HH SAT BP PS PFS TSP VRP TOT
AdapHH 34.3 45 9 36 40.3 15 179.5
VNS-TW 34.3 2 35.5 31 17.3 6 126
ML 14 11 27.5 38 13 22 125.5
PHUNTER 10 3 11.5 7.5 26.3 33 91.3
EPH 0 10 8.5 19 36.3 12 85.8
NAHH 14 19 1 22 12 6 74
HAHA 32.3 0 23.5 0.8 0 14 70.6
ISEA 6 29 13.5 1.5 12 5 67
KSATS-HH 23.5 9 7.5 0 0 22 62
GG 4 9 23 18 0 0 54
HAEA 0.5 3 1 6.8 11 27 49.3
ACO-HH 0 20 0 8.3 8 2 38.3
GenHive 0 12 5.5 6 3 6 32.5
DynILS 0 12 0 0 13 1 26
XCJ 5.5 11 0 0 0 5 21.5
AVEG-Nep 12 0 0 0 0 9 21
SA-ILS 0.3 0 16 0 0 4 20.3
GISS 0.3 0 10 0 0 6 16.3
SelfSearch 0 0 2 0 3 0 5
MCHH-S 4.3 0 0 0 0 0 4.3
Ant-Q 0 0 0 0 0 0 0

instances which are randomly generated based on the defini-
tion of the given problem. The results show that the proposed
greedy gradient heuristic selection method outperforms the
other approaches when combined with simulated annealing
acceptance criterion. Although the performance of the new
hyper-heuristic is evaluated on a new problem, it is our
intention to extend our studies and investigate its performance
across the other university course timetabling instances, such
as ITC2007. To test its level of generality, the proposed hyper-
heuristic has been tested across different problem domains and
compared to different previously proposed hyper-heuristics.
The results show that the hyper-heuristic is a general method-
ology.

REFERENCES

[1] E. K. Burke, M. Gendreau, M. Hyde, G. Kendall, G. Ochoa, E. Özcan,
and R. Qu, “Hyper-heuristics: A survey of the state of the art,” JORS,
to appear.

[2] P. Cowling, G. Kendall, and E. Soubeiga, “A hyperheuristic approach
to scheduling a sales summit,” in Selected papers from the Third Inter-
national Conference on Practice and Theory of Automated Timetabling.
London, UK: Springer-Verlag, 2001, pp. 176–190.

[3] E. K. Burke, M. Hyde, G. Kendall, G. Ochoa, E. Özcan, and J. R. Wood-
ward, “A classification of hyper-heuristics approaches,” in Handbook of
Metaheuristics, 2nd ed., ser. International Series in Operations Research
& Management Science, M. Gendreau and J.-Y. Potvin, Eds. Springer,
2010, vol. 57, ch. 15, pp. 449–468.

[4] E. Özcan, B. Bilgin, and E. E. Korkmaz, “A comprehensive analysis
of hyper-heuristics,” Intelligent Data Analysis, vol. 12, no. 1, pp. 3–23,
2008.

[5] E. Burke, G. Kendall, M. Misir, and E. Özcan, “Monte carlo hyper-
heuristics for examination timetabling,” Annals of Operations Research,
pp. 1–18, 2010.

[6] B. Bilgin, E. Özcan, and E. Korkmaz, “An experimental study on hyper-
heuristics and exam timetabling,” in Practice and Theory of Automated
Timetabling VI, ser. Lecture Notes in Computer Science, E. Burke and
H. Rudov, Eds. Springer Berlin / Heidelberg, 2007, vol. 3867, pp.
394–412.

TABLE IV
MAX-SAT, OBJECTIVE FUNCTION VALUES OBTAINED BY THE EIGHT HYPER-HEURISTICS AND THE NEW DEVELOPED HYPER-HEURISTIC ON THE 10

INSTANCES. THE BEST VALUES FOR EACH INSTANCE ARE HIGHLIGHTED IN BOLD.

Instance HH1 HH2 HH3 HH4 HH5 HH6 HH7 HH8 PHH
Inst1 46 33 14 28 119 12 56 40 16
Inst2 40 33 36 50 136 34 38 66 28
Inst3 32 24 28 47 116 29 35 53 17
Inst4 16 13 35 24 60 15 15 25 12
Inst5 9 10 45 37 70 33 9 36 33
Inst6 22 17 52 52 106 51 24 55 36
Inst7 6 6 8 12 18 9 5 15 9
Inst8 6 6 8 11 13 11 6 14 7
Inst9 8 7 11 16 21 12 9 19 11
Inst10 211 211 221 239 259 215 217 239 211

TABLE V
1D BIN PACKING, OBJECTIVE FUNCTION VALUES OBTAINED BY THE EIGHT HYPER-HEURISTICS AND THE NEW DEVELOPED HYPER-HEURISTIC ON THE

10 INSTANCES. THE BEST VALUES FOR EACH INSTANCE ARE HIGHLIGHTED IN BOLD.

Instance HH1 HH2 HH3 HH4 HH5 HH6 HH7 HH8 PHH
Inst1 0.0174 0.0176 0.0108 0.0120 0.0541 0.0157 0.0217 0.0714 0.0115
Inst2 0.0163 0.0165 0.0071 0.0077 0.0501 0.0129 0.0214 0.0712 0.0115
Inst3 0.0238 0.0229 0.0247 0.0230 0.0283 0.0231 0.0236 0.0308 0.0228
Inst4 0.0248 0.0249 0.0266 0.0243 0.0308 0.0257 0.0255 0.0327 0.0241
Inst5 0.0064 0.0062 0.0003 0.0046 0.0151 0.0066 0.0073 0.0218 0.0046
Inst6 0.0040 0.0085 0.0036 0.0036 0.0187 0.0089 0.0090 0.0234 0.0038
Inst7 0.1145 0.1047 0.0107 0.0312 0.1715 0.0538 0.1386 0.1666 0.0431
Inst8 0.1337 0.1285 0.0168 0.0640 0.1719 0.0942 0.1506 0.1799 0.0691
Inst9 0.0559 0.0569 0.0562 0.0944 0.0927 0.0608 0.0582 0.1267 0.0658

Inst10 0.0135 0.0128 0.0190 0.0309 0.0344 0.0166 0.0139 0.0428 0.0287

TABLE VI
PERSONNEL SCHEDULING, OBJECTIVE FUNCTION VALUES OBTAINED BY THE EIGHT HYPER-HEURISTICS AND THE NEW DEVELOPED HYPER-HEURISTIC

ON THE 10 INSTANCES. THE BEST VALUES FOR EACH INSTANCE ARE HIGHLIGHTED IN BOLD.

Instance HH1 HH2 HH3 HH4 HH5 HH6 HH7 HH8 PHH
Inst1 3346 3321 3389 3318 3338 8017 3344 3342 3398
Inst2 2220 2315 2400 2275 2454 21008 2095 2893 2595
Inst3 390 400 495 375 400 905 355 340 3175
Inst4 23 17 32 19 16 80 22 16 36
Inst5 23 26 32 24 24 81 19 28 36
Inst6 17 17 32 24 22 81 28 38 30
Inst7 1111 1119 1231 1118 1113 35391 1211 1490 1417
Inst8 2188 2202 2205 2221 2288 46661 2275 3959 2459
Inst9 3163 3255 3465 3360 3354 46952 3414 6905 3519
Inst10 11486 9706 12505 12994 9771 105850 9807 17224 9835

TABLE VII
PERMUTATION FLOW SHOP, OBJECTIVE FUNCTION VALUES OBTAINED BY THE EIGHT HYPER-HEURISTICS AND THE NEW DEVELOPED HYPER-HEURISTIC

ON THE 10 INSTANCES. THE BEST VALUES FOR EACH INSTANCE ARE HIGHLIGHTED IN BOLD.

Instance HH1 HH2 HH3 HH4 HH5 HH6 HH7 HH8 PHH
Inst1 6365 6380 6399 6312 6393 6297 6375 6323 6370
Inst2 6327 6330 6337 6281 6328 6253 6335 6288 6297
Inst3 6401 6410 6401 6339 6418 6339 6407 6364 6388
Inst4 6388 6408 6366 6327 6373 6366 6371 6363 6369
Inst5 6461 6470 6438 6392 6483 6405 6478 6422 6453
Inst6 10540 10546 10506 10499 10547 10509 10546 10542 10512
Inst7 10976 10965 10965 10923 10980 10923 10965 10956 10959
Inst8 26483 26490 26538 26409 26506 26418 26512 26396 26322
Inst9 26979 26929 26978 26890 26913 26920 26960 26800 26850
Inst10 26755 26794 26833 26731 26755 26715 26811 26716 26714

TABLE VIII
COMPARISONS OF THE DIFFERENT HYPER-HEURISTICS OVER EACH DOMAIN BASED ON FORMULA1 SCORES

Domain HH1 HH2 HH3 HH4 HH5 HH6 HH7 HH8 PHH
MAX-SAT 61.0 77.0 40.0 24.5 1.0 49.0 56.5 14.5 66.5
1D Bin Packing 50.0 52.0 76.0 61.0 10.0 43.0 31.0 1.0 66.0
Personnel Scheduling 70.0 66.5 29.0 55.5 58.0 1.0 58.0 33.0 19.0
Permutation Flow Shop 29.0 19.5 26.0 81.0 16.5 74.5 18.5 65.0 60.0
Overall 210.0 215.0 171.0 222.0 85.5 167.5 164.0 113.5 211.5

[7] R. Bai and G. Kendall, “An investigation of automated planograms
using a simulated annealing based hyper-heuristics,” in Metaheuristics:
Progress as Real Problem Solver, T. Ibaraki, K. Nonobe, and M. Yagiura,
Eds. Springer, 2005, pp. 87–108.

[8] R. Bai, E. K. Burke, G. Kendall, and B. McCollum, “A simulated
annealing hyper-heuristic methodology for flexible decision support,”
School of CSiT, University of Nottingham, Tech. Rep. Technical Report
NOTTCS-TR-2007-8, 2007.

[9] S. Even, A. Itai, and A. Shamir, “On the Complexity of Timetable and
Multicommodity Flow Problems,” SIAM Journal on Computing, vol. 5,
no. 4, pp. 691–703, 1976.

[10] D. de Werra, “The combinatorics of timetabling,” European Journal of
Operational Research, vol. 96, no. 3, pp. 504 – 513, 1997.

[11] R. Lewis, “A survey of metaheuristic-based techniques for university
timetabling problems,” OR Spectrum, vol. 30, no. 1, pp. 167–190, 2007.

[12] R. Lewis, B. Paechter, and O. Rossi-Doria, “Metaheuristics for university
course timetabling,” in In Evolutionary Scheduling (Studies in Compu-
tational Intelligence vol. 49), K. Dahal, K. Tan, and P. Cowling, Eds.
Berlin: Springer-Verlag, 2007, pp. 237–272.

[13] W. Erben and J. Keppler, “A genetic algorithm solving a weekly course-
timetabling problem,” in Selected papers from the First International
Conference on Practice and Theory of Automated Timetabling. London,
UK, UK: Springer-Verlag, 1996, pp. 198–211.

[14] K. Socha, J. Knowles, and M. Sampels, “A max-min ant system for
the university course timetabling problem,” in Proceedings of the Third
International Workshop on Ant Algorithms, ser. ANTS ’02. London,
UK, UK: Springer-Verlag, 2002, pp. 1–13.

[15] B. McCollum, A. Schaerf, B. Paechter, P. McMullan, R. Lewis, A. J.
Parkes, L. D. Gaspero, R. Qu, and E. K. Burke, “Setting the research
agenda in automated timetabling: The second international timetabling
competition,” INFORMS J. on Computing, vol. 22, no. 1, pp. 120–130,
Jan. 2010.

[16] D. Abramson, “Constructing school timetables using simulated anneal-
ing: Sequential and parallel algorithms,” Management Science, vol. 37,
no. 1, pp. 98–113, 1991.

[17] A. Colorni, M. Dorigo, and V. Maniezzo, “A genetic algorithm to
solve the timetable problem,” Politecnico di Milano, Italy, Tech. Rep.
Technical Report No. 90-060, 1992.

[18] A. Hertz, “Finding a feasible course schedule using tabu search,”
Discrete Applied Mathematics, vol. 35, no. 3, pp. 255 – 270, 1992.

[19] A. Schaerf, “Tabu search techniques for large high-school timetabling
problems,” in Proceedings of the thirteenth national conference on
Artificial intelligence - Volume 1, ser. AAAI’96. AAAI Press, 1996,
pp. 363–368.

[20] B. Paechter, R. C. Rankin, A. Cumming, and T. C. Fogarty, “Timetabling
the classes of an entire university with an evolutionary algorithm,” in V,
Springer, LNCS. Springer-Verlag, 1998, pp. 865–874.

[21] D. Abramson, H. Dang, and M. Krisnamoorthy, “Simulated annealing
cooling schedules for the school timetabling problem,” Asia-Pacific
Journal of Operational Research, vol. 16, pp. 1–22, 1999.

[22] G. R. Filho, L. Antonio, and L. A. N. Lorena, “A constructive evolution-
ary approach to school timetabling,” in In Applications of Evolutionary
Computing. Springer Lecture, 2001, pp. 130–139.

[23] A. Alkan and E. Özcan, “Memetic algorithms for timetabling,” in
Evolutionary Computation, 2003. CEC ’03. The 2003 Congress on,
vol. 3, 2003, pp. 1796 – 1802.

[24] E. Özcan, A. J. Parkes, and A. Alkan, “The interleaved constructive
memetic algorithm and its application to timetabling,” Computers &
Operations Research, vol. 39, no. 10, pp. 2310 – 2322, 2012.

[25] E. K. Burke, G. Kendall, and E. Soubeiga, “A tabu-search hyperheuristic

for timetabling and rostering,” Journal of Heuristics, vol. 9, no. 6, pp.
451–470, 2003.

[26] E. K. Burke, S. Petrovic, and R. Qu, “Case-based heuristic selection
for timetabling problems,” J. of Scheduling, vol. 9, no. 2, pp. 115–132,
2006.

[27] T. Muller, “Itc2007 solver description: a hybrid approach,” Annals of
Operations Research, vol. 172, pp. 429–446, 2009.

[28] J. Swan, E. Özcan, and G. Kendall, “Hyperion - a recursive hyper-
heuristic framework.” in LION, ser. Lecture Notes in Computer Science,
C. A. C. Coello, Ed., vol. 6683. Springer, 2011, pp. 616–630.

[29] E. Burke, T. Curtois, M. Hyde, G. Ochoa, and J. A. Vazquez-Rodriguez,
“HyFlex: A Benchmark Framework for Cross-domain Heuristic Search,”
ArXiv e-prints, Jul. 2011.

[30] M. Misir, K. Verbeeck, P. De Causmaecker, and G. Vanden Berghe, “A
new hyper-heuristic implementation in HyFlex: a study on generality,”
in Proceedings of the 5th Multidisciplinary International Scheduling
Conference: Theory & Application,, J. Fowler, G. Kendall, and
B. McCollum, Eds., Aug. 2011, pp. 374–393. [Online]. Available:
https://lirias.kuleuven.be/handle/123456789/313980

[31] A. Nareyek, “Choosing search heuristics by non-stationary reinforce-
ment learning,” in Metaheuristics: Computer Decision-Making, M. G. C.
Resende and J. P. de Sousa, Eds. Kluwer, 2003, ch. 9, pp. 523–544.

[32] R. Bai, E. Burke, M. Gendreau, G. Kendall, and B. McCollum, “Mem-
ory length in hyper-heuristics: An empirical study,” in Computational
Intelligence in Scheduling, SCIS ’07. IEEE Symposium on, april 2007,
pp. 173 –178.

[33] E. K. Burke, T. Curtois, M. R. Hyde, G. Kendall, G. Ochoa, S. Petro-
vic, J. A. V. Rodrı́guez, and M. Gendreau, “Iterated local search vs.
hyper-heuristics: Towards general-purpose search algorithms,” in IEEE
Congress on Evolutionary Computation, 2010, pp. 1–8.

